Given the values
of a and b, print all primes in the interval from a to b inclusively.
Input. Two integers a and b (1 ≤ a ≤ b ≤ 100000).
Output. Print in one line all prime numbers in the interval from a to b inclusively.
Sample
input |
Sample
output |
1 10 |
2 3 5 7 |
sieve of Eratosthenes
Using the algorithm Sieve of Eratosthenes, fill the primes array, where
·
primes[i] = 1, if i is prime;
·
primes[i] = 0, if i is composite;
Print all numbers i in the interval from a to b, for which primes[i] = 1.
Example
The filled array primes
has the form:
The prime numbers in the
interval [1; 10] are 2, 3, 5, 7.
Declare the working array primes.
#define MAX 100001
int primes[MAX];
The gen_primes function implements
the Sieve of Eratosthenes and fills the primes array. The numbers 0 and 1 are not prime.
void gen_primes(void)
{
int i,
j;
for (i =
0; i < MAX; i++) primes[i] = 1;
primes[0]
= primes[1] = 0;
for (i =
2; i * i < MAX; i++)
if
(primes[i])
for (j =
i * i; j < MAX; j += i) primes[j] = 0;
}
The main part of the program. Fill the primes array.
gen_primes();
Read the input data.
scanf("%d %d", &a,
&b);
Print all primes in the interval from a
to b.
for (i = a; i <= b; i++)
if
(primes[i]) printf("%d ", i);
printf("\n");
Let’s
declare a variable primes
of type bitset to store information about prime
numbers.
#define MAX 100001
bitset<MAX> primes;
The gen_primes function implements the
Sieve of Eratosthenes. We fill the primes
bitset. The numbers 0 and 1 are not prime.
void gen_primes(void)
{
primes.flip(); // set all to 1
primes.reset(0); primes.reset(1);
for (int i = 2; i <= sqrt(MAX); i++)
if (primes.test(i))
for (int j = i * i; j < MAX; j += i) primes.reset(j);
}
The main part of the program. Fill the primes array.
gen_primes();
Read the input data.
scanf("%d %d", &a, &b);
Print all primes in the interval from a
to b.
for (i = a; i <= b; i++)
if (primes.test(i))
printf("%d ", i);
printf("\n");
import java.util.*;
public class Main
{
final static int MAX_SIZE = 100001;
static BitSet bits = new BitSet(MAX_SIZE);
public static void Eratosthenes()
{
bits.set(2, MAX_SIZE, true);
for (int i = 2; i < Math.sqrt(MAX_SIZE); i++)
{
if (bits.get(i))
for (int j = i * i; j < MAX_SIZE; j += i)
bits.set(j, false);
}
}
public static void main(String args[])
{
Scanner con = new Scanner(System.in);
Eratosthenes();
int a = con.nextInt();
int b = con.nextInt();
for (int i = a; i <= b; i++)
if (bits.get(i)) System.out.print(i + " ");
System.out.println();
con.close();
}
}
The seive_of_eratosthenes
function implements the Sieve of
Eratosthenes and fills the is_prime list. The numbers 0 and 1 are not prime.
def seive_of_eratosthenes(n):
is_prime = [True] * (n+1)
is_prime[0], is_prime[1] = False, False
for i in range(2, int(n ** 0.5) + 1):
if
is_prime[i]:
for
j in range(i * i, n + 1, i):
is_prime[j]
= False
return is_prime
The main part of
the program. Fill the prime list.
prime = seive_of_eratosthenes(100000)
Read the input data.
a, b = map(int, input().split())
Print all primes in the interval from
a to b.
for i in
range (a, b + 1):
if
prime[i]: print(i,end=' ')